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Abstract. We generalize the Poissonian evolving random graph model of M. Bauer and D. Bernard (2003),
to deal with arbitrary degree distributions. The motivation comes from biological networks, which are
well-known to exhibit non Poissonian degree distributions. A node is added at each time step and is
connected to the rest of the graph by oriented edges emerging from older nodes. This leads to a statistical
asymmetry between incoming and outgoing edges. The law for the number of new edges at each time
step is fixed but arbitrary. Thermodynamical behavior is expected when this law has a large time limit.
Although (by construction) the incoming degree distributions depend on this law, this is not the case for
most qualitative features concerning the size distribution of connected components, as long as the law has
a finite variance. As the variance grows above 1/4, the average being < 1/2, a giant component emerges,
which connects a finite fraction of the vertices. Below this threshold, the distribution of component sizes
decreases algebraically with a continuously varying exponent. The transition is of infinite order, in sharp
contrast with the case of static graphs. The local-in-time profiles for the components of finite size allow to
give a refined description of the system.

PACS. 02.10.Ox Combinatorics; graph theory – 02.50.-r Probability theory, stochastic processes, and
statistics – 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions

1 Introduction

Evolving graphs arise naturally in the modelization of
communication networks, but also of social organizations
and biological phenomena: brain formation, genetic regu-
lations, etc. Until recently, quantitative data were scarce,
but the situation is changing very quickly [1,8,10]. In
many important cases the laws governing the evolution
of the network are unknown but non deterministic, and
the final number of nodes is rather large. This explains
why physicists (see the reviews [1,5] and Refs. therein)
have been developing recently random graph techniques
in the thermodynamic limit to understand some peculiar
features, the most salient being large degree distributions,
that seem to occur in an unexpected variety of situations.

Many cases of interest lead to oriented graph mod-
els, for which the in- and out-degree distributions can be
governed by different laws. This was one of the basic ob-
servations in the study of the yeast genetic regulatory net-
work presented in [8]: a single gene may participate to the
regulation of many other genes – the law for out-degrees
seems to be large –, but each gene is only regulated by a
few other genes – the law for in-degrees seems to have fi-
nite moments. A biological interpretation for the asymme-
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try is that the few promoter-repressor sites for each gene
bind only to specific proteins, but that along the genome
many promoter-repressor sites are homologous. One of our
aims is to work with a model that incorporates such an
asymmetry.

We shall follow quite closely the philosophy of [2], and
in particular pay attention not only to global quantities,
but also to local-in-time profiles. We feel that for evolv-
ing networks this is a crucial condition to extract relevant
information, because as we shall see, global quantities (av-
eraged over time) give a distorded view of the network. On
the other hand, it is hard experimentally to access local
quantities, either because the ages are not known, or be-
cause their consideration would reduce the statistics down
to an unacceptable level. But the amount of available in-
formation is growing very rapidly, and one can hope that
local quantities will become accessible in a near future.

The model we study is the natural evolving cousin of
the static maximal entropy model with given in-degree dis-
tribution [3,13]. Starting from a single vertex at time 1, a
new vertex is created at each time step – so that at time t,
the size of the system, i.e. the number of vertices, is t – and
new oriented edges are created with specified probabilistic
rules. An arbitrary probability generating function T en-
codes the parameters of the model in the thermodynamic
(large t) limit. Precise definitions are given in the next
section.
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Our main results are the following:

The global and local in-degree distributions are given
by T , see equation (3), whereas the global out-degree dis-
tribution is geometric with average T ′(1), see equation (5).
The local out-degree distribution is Poissonian but age
dependent, equation (4). In the case of a static maxi-
mal entropy random graph with the same in-degree distri-
bution ([3,13]), the distribution of out-degrees would be
Poissonian.

The global structure of connected components is stud-
ied via a generating function which satisfies a differential
equation, leading to recursion relations for the distribution
of component sizes, see equation (7). This is illustrated by
analytical computations in the case when T (z) is a poly-
nomial of degree 1.

The general criterion for the absence of a component
containing a finite fraction of the sites in the thermody-
namic limit is that the average α be ≤ 1/2 and the vari-
ance γ be ≤ 1/4. In that case the system contains com-
ponents whose sizes scale like a power of the total size of
the graph, see equation (14); equivalently, the probability
distribution for component sizes has an algebraic queue,
see equation (13). Above the threshold (when α > 1/2
or γ > 1/4) this probability distribution is defective but
decreases exponentially see equation (16). The boundary
separating the percolating and non percolating phases is
γ = 1/4 and α < 1/2. In the percolating phase, but close
to this boundary, γ − 1/4 is > 0 but small and the giant
component is exponentially small, see equation (15). This
situation, somehow reminiscent of the Kosterlitz-Thouless
transition, had already been observed in a variety of
models [2,4,6].

We compare the percolation criterion with the one
that emerges from the study of a static maximal entropy
random graph with the same in- and out-degree distribu-
tions as our evolving graph ([3,13]). In the static case, the
growth of the giant component is generically linear close
to the threshold. But we show that if T (z) leads to a per-
colating static graph, it is automatically percolating for
the evolving graph model. The intuitive explanation lies
in the inhomogeneities of the evolving graph: the environ-
ment of an old vertex is denser than what a static model
produces. And indeed, the giant component profile close
to threshold is very asymmetric, see equations (23, 24).

In the thermodynamic limit, the finite components are
trees, and we derive a direct enumeration formula to count
for their abundance equation (11). This can be used to
describe all local in time profiles of finite components, a
result we also recover for one time quantities via a gener-
ating function approach equation (8). In Appendix A, we
give a proof of the equivalence of the generating function
approach and tree enumeration, a question that was left
opened in [2].

We have confronted our analytical results with numer-
ical simulations whenever possible, our preferred example
being when T is a geometric distribution.

2 The model

The random graphs we consider are constructed according
to the following rules:

1. for t = 1, 2, · · · , we denote by Gt the set of simple
graphs with vertex set Vt = [1, · · · , t], i.e. the set of
pairs (Vt, Et) where Et, the set of edges of the graph,
is a subset of {(i, j), 1 ≤ i < j ≤ t}. We orient the
graph (Vt, Et) by saying that (i, j) ∈ Et is an edge
from i to j: an edge always goes from an older to a
younger vertex. Note that G1 = {({1}, ∅)} contains a
single graph, made of one vertex but no edge.

2. An evolving graph is a sequence G = (Gt)t≥1 =
((Vt, Et))t≥1, where Gt ∈ Gt for t ≥ 1, and for t ≥ 2,
Gt−1 is the induced subgraph of Gt obtained by remov-
ing vertex t and all edges adjacent to it. Stated differ-
ently, Gt for t ≥ 2 is obtained from Gt−1 by adding
vertex t and some edges of the form (i, t), i < t. This
model of evolution implies that knowing Gt is equiva-
lent to knowing G1, · · · , Gt−1, Gt. We write G for the
set of evolving graphs.

3. In addition to these rules of construction, we put a
probability measure p on the set of evolving graphs. If
G is an evolving graph, we denote by Ĝt the number
of edges arriving at vertex t in Gt (which is the same
as the number of edges arriving at t in Gt′ for any
t′ ≥ t). We want to fix the probability distributions
for the in-degrees, i.e. for the number of edges arriv-
ing at vertices 1, 2, · · · . So we impose p({G ∈ G, Ĝt =
k}) = τt,k for a given sequence of probability distribu-
tions {τt,k, t ≥ 1, 0 ≤ k ≤ t − 1},τt,k ≥ 0,

∑
k τt,k = 1.

Since this criterion is far from fixing unambiguously
the probability law for the evolving graph, we add
the assumption of independence: the number of edges
arriving at vertex 1, 2, · · · , t are independent random
variables.

The independence assumption deserves a comment.
This is clearly the simplest choice to make. It has an-
other simple but interesting property. Suppose that for
each t ≥ 1, πt is a probability law on Gt such that

1. the family {πt}t≥1 is compatible: πt averaged over the
edges arriving at vertex t is πt−1.

2. The probability that k edges arrive at vertex t under
πt is τt,k.

For fixed t, define the entropy of πt as usual: St ≡∑
G∈Gt

πt(G) log πt(G). Then a trivial computation shows
that for each t, St is maximum if under πt the number of
edges arriving at vertices 1, 2, · · · , t are independent ran-
dom variables. In that sense, the probability law we have
chosen has maximum entropy under the constraint that
the distribution of in-degrees is fixed.

This means that p is the law that does not introduce
any further bias if one is to model a (real) network for
which the only observed features are the in-degrees. For
instance, possible departures between the (real) network
and our model when other quantities are measured would
be the test to know whether or not the evolution of the
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graph is governed solely or mostly by in-degree distri-
butions. This could be generalized to more complicated
situations.

Note that we did not worry about the size of the se-
quence defining an evolving graph. In fact, we shall as
often as possible suppose it is infinite.

3 Notations and basic results

3.1 Generating functions

For any vertex v ≥ 1, let Tv be the generating function
for the incoming degree distribution:

Tv(z) ≡
v−1∑
k=0

τv,kzk.

We shall be mostly interested in the thermodynamic limit,
i.e. in t independent features of the large t behavior of Gt

when G is a random element in (G, p). A typical example
is the behavior of limt→∞ |Et|/|Vt|1. Obviously, this limit
does not exist for any a priori choice of the τv,k’s. The
study of thermodynamic convergence for this quantity and
others would be of independent interest, but we shall see
that a simple assumption ensures that many quantities
of interest have a thermodynamic limit: we impose that
the sequence of functions Tv(z) converges to a probability
generating function

T (z) ≡
∑
k≥0

τk

k!
zk (1)

in such a way that the sequence of averages or of variances
converges to that of T (z).

This property implies in particular that, for any k, τv,k

tends to τk

k! for large v. Moreover, we will often use the
fact that T (1) = 1. We use the notations α ≡ T ′(1) and
γ ≡ T ′′(1) + T ′(1) − T ′(1)2 for the average and variance
of T .

As a technical hypothesis, to avoid several pathologies,
we shall always implicitly assume that τ0 = T (0) > 0.

3.2 A preliminary formula

We shall sometimes be lead to consider situations in which
a new vertex t + 1 appears and connects to the rest of the
graph avoiding m forbidden vertices. This will happen,
for instance, if one is interested in the distribution of con-
nected components in the graph. In this section we would
like to give a general formula for such situations. Hence,
let αt+1,m be the probability for a new vertex t + 1 not to
connect to m given vertices. This probability is given by
the formula:

αt+1,m ≡
∑
n≥0

τt+1,n

(
t−m

n

)
(

t
n

) ·

1 Here and in the sequel, |S| denotes the number of elements
of the finite set S.

Defining αt+1,m(z) ≡
∑

n≥0 τt+1,nzn (t−m
n )

(t
n)

, we notice that

αt+1,m+1(z) = αt+1,m(z) − z

t − m
α′

t+1,m(z).

Since αt+1,0(z) = Tt+1(z), we have:

αt+1,m(z) =Tt+1(z) −
(
m
1

)
z

t
T ′

t+1(z)

+

(
m
2

)
z2

t(t − 1)
T ′′

t+1(z)

− · · · (−)m

(
m
m

)
zm

t · · · (t − m + 1)
T

(m)
t+1 (1)

αt+1,m =1 −
(
m
1

)
t

T ′
t+1(1) +

(
m
2

)
t(t − 1)

T ′′
t+1(1)

− · · · (−)m

(
m
m

)
t(t − 1) · · · (t − m + 1)

T
(m)
t+1 (1).

In the thermodynamic limit, we shall only need the
large t finite m approximation

αt+1,m � 1 − αm

t
· (2)

These simple formulæ may now be used to calculate a
few quantities. We’ll first describe the degree distributions
of incoming and outgoing edges, whereas the two follow-
ing sections will present the main relations governing the
distributions of connected components of the graphs.

4 Degree distribution

4.1 Notations

Let

1. l−j (t) (resp. l+j (t)) be the number of incoming (resp.
outgoing) edges at a vertex j at time t

2. v−k (t) (resp. v+
k (t)) be the number of vertices with k

incoming (resp. outgoing) edges at time t.

With these notations, the edge distributions are described
by the generating functions:

ν±
t (z) ≡ 1

t

∑
0≤k<t

〈
v±k (t)

〉
zk =

1
t

∑
1≤j≤t

〈
zl±j (t)

〉
·

In the thermodynamic limit, it is possible to give an
expression for these generating functions.

4.2 In-degree distribution

Up to a normalization factor, the probability for vertex j
to have k incoming edges is τj,k. This shows that〈

zl−j (t)
〉

=
∑
k≥0

τj,kzk.
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In the thermodynamic limit, this becomes〈
zl−j (t)

〉
= T (z). (3)

Hence, in the thermodynamic limit, the probability for
any vertex to have k incoming edges is given by τk

k! , which
is correctly normalized.
This implies in particular that, in the thermodynamic
limit, the average number of edges coming to a vertex
is precisely α.

4.3 Out-degree distribution

Any edge emerging from a vertex j can be seen as an
edge arriving at a vertex younger than j. Let t > j be the
time at which one observes the number of edges emerging
from j. We define σ ≡ j/t. The quantity

〈
zl+σt(t)

〉
is given

by the formula:

∑
k

zk
∑

σt<j1<···<jk≤t

k∏
i=1

(
ji−2∑
k′=0

τji,k′+1

(
ji−2

k′
)

(
ji−1
k′+1

)
)

×
∏

j<j′≤t;j′ �=ji


j′−2∑

k′=0

τj′,k′

(
j′−2

k′
)

(
j′−1

k′
)

 ·

Indeed, the probability for j to have k outgoing edges is
obtained by summing over j1, · · · , jk > j the probabilities
for j to be linked to these k vertices and to no other
vertex. Each of this probabilities can easily be calculated
from the following relations:

∑
0≤k′≤ji−2

τji,k′+1(
ji−1
k′+1

) (ji − 2
k′

)
=

T ′
ji

(1)
ji − 1

∑
0≤k′≤j′−2

τj′,k′(
j′−1

k′
)(j′ − 2

k′

)
= 1 −

T ′
j′(1)

j′ − 1
·

For fixed σ and large t, the second product simplifies to
σα and the average we look for becomes:

〈
zl+σt(t)

〉
� σα

∑
k

zk
∑

σt<j1<···<jk≤t

αk

j1 · · · jk

� σα
∑

k

zk 1
k!

[ln t − ln σt]k αk.

Hence, for fixed σ,〈
zl+σt(t)

〉
→ e−(z−1)α ln σ (4)

for large t, so the local out-degree distribution is Pois-
sonian with σ-dependent parameter α ln σ. Integrating
σ between 0 and 1 yields the asymptotic value for the
generating function ν+

t (z):

ν+
t (z) → 1

1 + α(1 − z)
(5)

at large t.

Identifying the term of degree k in z in the develop-
ment of this function finally yields the probability for a
vertex to have k outgoing edges:

p+(k) =
αk

(1 + α)k+1
·

We see that the distribution of outgoing edges is geo-
metric and depends on the probability distribution T only
through the average number of incoming edges α.

4.4 Mixed distribution

In our model, the number of in and out edges l+j (t)
and l−j (t) at a given vertex are independent by con-
struction. The generating function for the mixed degree
distribution is

νt(z+, z−) ≡ 1
t

∑
k+,k−

〈
vk+,k−(t)

〉
z

k+
+ z

k−
−

=
1
t

∑
1≤j≤t

〈
z

l+j (t)

+ z
l−j (t)

−

〉

which is easily obtained from equations (3, 5):

ν(z+, z−) =
T (z−)

1 + α(1 − z+)
· (6)

The local counterpart would easily follow from equa-
tions (3, 4).

5 Connected components

In this section we give formulæ for the number of compo-
nents of size k in the thermodynamic limit (Sect. 5.1), and
for the time distribution of these components (Sect. 5.3).
This derivation makes some natural assumptions of self av-
eraging. In Section 5.4, we evaluate without such assump-
tions the contribution of individual graphs to the weights
of random graphs, and show that trees dominate the ther-
modynamic limit. We use this result in the appendix to
compute directly the generating function for the number
of components of size k, and show that it coincides with
the one given in Section 5.1.

5.1 Global-time results

Let Nk(t) be the number of connected components of size
k at time t for a given graph, and Nt(z) the corresponding
generating function:

Nt(z) ≡
∑
k≥1

Nk(t)zk.

Instead of making an argument at finite t and taking the
thermodynamic limit t → ∞ afterwards, we shall assume
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that the thermodynamic limit exists. The computations in
Appendix A, which yield the same results, contain a fully
rigorous argument by using a totally different approach.

So we assume that for large t and fixed k, Nk(t) ∼
tCk. In addition, there might be a giant component which
occupies about tP∞ sites. We analyze what happens when
the graph grows from size t to size t+∆t where t 
 ∆t 

1 are such that ∆t is already a thermodynamical number
but t is so large that the statistical properties of the graph
do not change appreciably between t and t+∆t , and make
a quick estimate of the averages.

Neglecting terms which are o(∆t) (coming either from
fluctuations or from other origins), we first observe that
there are about ∆tτm/m! vertices between t and t + ∆t
which have in-degree m. On the other hand, between t
and t + ∆t , ∆tα edges have been created, they have con-
nected at random young vertices to older connected com-
ponents, the probability that a new vertex connects more
than once to a finite connected component being negligi-
ble. So ∆tαkCk components that were of size k at time
t are now parts of larger components. So the number of
components of size k destroyed between t and t + ∆t is

∼ ∆tαkCk.

On the other hand, about ∆tτm/m! vertices between t and
t+∆t have m incoming edges. Suppose that such a vertex
got connected to components of size k1, · · · , km to build
a component of size 1 + k1 + · · · + km. The probability
of this event is k1Ck1 · · · kmCkm so that the total number
of components of size k that have been created by such a
process is

∼ ∆t
∑
m

τm

m!

∑
k1,··· ,km

k1Ck1 · · · kmCkmδk,1+k1+···+km .

On the other hand, we know the total variation of the
number of components of size k between t and t + ∆t
is about (t + ∆t)Ck − tCk = ∆tCk. To resume, the net
balance is

Ck = −αkCk +
∑
m

τm

m!

×
∑

k1,··· ,km

k1Ck1 · · · kmCkmδk,1+k1+···+km .

This is cleanly expressed as a functional equation for the
generating function C(z) ≡

∑
k Ckzk:

C(z) = −zα∂zC(z) + zT (z∂zC(z)) (7)

which describes the number of components of size k at
large t.

5.2 A simple example

The case when T (z) = (1−p)+pz leads to tractable equa-
tions even at finite t. As we shall see later, this example
is pathological from the point of view of the percolation

transition. This is another reason to give a separate treat-
ment.

Though it is not unlikely that this toy model has been
solved more than once before, we have found no refer-
ence. So we give a sketch of the solution with apologies
to the original contributions if any. In particular, we com-
pute the scaling function governing the statistics of large
components.

When vertex t + 1 is added, it remains isolated with
probability 1−p in which case Nk(t+1)−Nk(t) = δk,1, or
is attached to a component of size l to build a component
of size l+1 with probability plNl(t)/t, in which case Nk(t+
1) − Nk(t) = δk,l+1 − δk,l. We infer

〈Nt+1(z)〉 − 〈Nt(z)〉 =(1 − p)z

+
∑
k,l

pl 〈Nl(t)〉 /t(δk,l+1 − δk,l)zk

=(1 − p)z+p
∑

l

l 〈Nl(t)〉/t(zl+1−zl)

=(1 − p)z + p/t(z2 − z)∂z 〈Nt(z)〉 .

The initial condition is 〈N1(z)〉 = N1(z) = z We can
simplify this equation by the change of variable z = w/(1+
w). Setting Qt(w) ≡ 〈Nt(z)〉, the equation for Qt is

Qt+1 − Qt = (1 − p)
w

1 + w
− p

w

t
∂wQt.

Nt(z) is a polynomial in z, so Qt+1 has a regular se-
ries expansion in w, Qt ≡

∑
k≥1 qk(t)wk which leads to

qk(t+1) = t−pk
t qk(t)+(1−p)(−1)k+1. Direct substitution

shows that qk(t) = t 1−p
1+pk (−1)k+1 is a particular solution.

The general solution rk(t) of the associated homogeneous
equation rk(t+1) = t−pk

t rk(t) is rk(t) = Γ (t−pk)
Γ (t)Γ (1−pk)rk(1).

Taking into account the initial condition Q1 = w/(1 + w)
leads to

qk(t) = (−1)k+1

(
t

1 − p

1 + pk
+

p(k + 1)
1 + pk

Γ (t − pk)
Γ (t)Γ (1 − pk)

)
·

We can now go back to the z variable:

〈Nk(t)〉 =
k∑

l=1

(−1)l+1

×
(

t
1 − p

1 + pl
+

p(l + 1)
1 + pl

Γ (t − pl)
Γ (t)Γ (1 − pl)

)
Γ (k)

Γ (l)(k − l)!
·

The contribution corresponding to the first term inside the
parenthesis, the one which is linear in t, can be resummed.
Indeed, if C(z) is a solution of C = (1−p)z+p(z2−z)∂zC,
tC(z) solves the original equation for 〈Nt(z)〉 even at finite
t. The solution which is regular at z = 0 is

C(z) =
∑
k≥1

1 − p

p

Γ (k)Γ (1 + 1/p)
Γ (k + 1 + 1/p)

zk.

One can check that, for any p ∈ [0, 1[, C′(z = 1) = 1. As
we shall explain later, that means there is no percolation.
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To summarize,

〈Nk(t)〉 =t
1 − p

p

Γ (k)Γ (1 + 1/p)
Γ (k + 1 + 1/p)

+
k∑

l=1

(−1)l+1 p(l+1)
1+pl

Γ (t−pl)
Γ (t)Γ (1−pl)

Γ (k)
Γ (l)(k−l)!

·

It is now possible to get the exact scaling func-
tion governing the size distribution of large compo-
nents. When both t and k are large, the thermody-
namic contribution scales like 1−p

p Γ (1 + 1/p)tk−1−1/p

while in the other contribution, for fixed l, one finds
(−1)l+1 p(l+1)

1+pl
1

Γ (1−pl)Γ (l) t
−plkl−1. This decreases very fast

with l so for large k one can extend the range of l to ∞.
The balance between the thermodynamic and finite size
contributions shows that the scaling variable is s = kt−p.
In the scaling limit

〈kNk(t)〉 ∼ 1 − p

p
Γ (1 + 1/p)s−1/p

+
∑
l≥1

(−1)l+1 p(l + 1)
1 + pl

1
Γ (1 − pl)Γ (l)

sl.

Let S(s) denote the scaling function on the right hand
side.

Defining sA(s) ≡
∑

l≥1(−1)l+1 1
Γ (1−pl)Γ (l)s

l, one can
rewrite

S(s)/s =
1 − p

p
Γ (1 + 1/p)s−1−1/p

+ A(s) − 1 − p

p

∫ 1

0

dλA(λs)λ1/p.

This expression of S exhibits clearly its small s be-
havior. To get control on the large s behavior, one can
use the familiar representation 1

Γ (z) = 1
2iπ

∫
C dweww−z

for z = 1 − pl and sum over l to obtain

A(s) =
1

2iπ

∫
C

dwew−swp

wp−1.

Observing that Γ (1+1/p)s−1−1/p =
∫∞
0 dλA(λs)λ1/p, one

gets a compact expression

S(s)/s = A(s) +
1 − p

p

∫ ∞

1

dλA(λs)λ1/p.

The large s expansion can then be obtained by stan-
dard methods (saddle point for A(s) and then analysis
at λ = 1 for the second term). The formulæ are rather
cumbersome and we simply quote the leading exponential
behavior

log S(s) ∼ −1 − p

p
p

1
1−p s

1
1−p s → +∞,

showing that S(s) decreases very fast at large s. As a

0 2 4 6 8 10
0

0.5

1

1.5

2

Fig. 1. Plots of S(s)/Sthermo(s) for p = 0.2 (solid line), p = 0.5
(dots) and p = 0.6 (dashed line).

simple example, take p = 1/2. Then A(s) = 1√
π
e−s2/4

and

S(s) =
1√
π

(
se−s2/4 +

1
s2

∫ ∞

s

dλλ2e−λ2/4

)
.

Returning to arbitrary p, the relation 〈kNk(t)〉 ∼
S(k/tp) implies that the average number of components
of size k ≥ stp is

〈∑
k≥stp Nk(t)

〉
∼
∫∞

s du S(u)/u < ∞.
So the large components have a size of order tp.

5.3 Local-in-time results

Knowing the global-in-time distribution of connected com-
ponents, it is natural to wonder whether this distribution
is homogeneous in time or not. More precisely, if j = σt
with fixed σ and t → ∞, what can we say about the prob-
ability for vertex j to be in a component of size k?

For k ≥ 1 let ρk(σ) be the probability that, in the
thermodynamic limit, vertex σt belongs to a connected
component of size k. The purpose of this section is to give
an equation governing the ρk’s.

Local-in-time equation

We use directly the thermodynamic assumption. A rigor-
ous justification could be obtained by a straightforward
refinement of the argument in Appendix A.

As in the global case, let ∆t be an interval of time such
that ∆t 
 1 but ∆t

t � 1. Between times t and t+∆t , the
number of vertices added to the graph is large but much
smaller than the size of the graph.
During the proof of equation (7), we have established that
the number of new components of size k is

∆t
∑
m

τm

m!

∑
k1,··· ,km

k1Ck1 · · · kmCkm δ1+
∑

i ki,k.
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Each of the m old components has average time distribu-
tion ρki

(σ)

Cki
so that, on average, the contribution of the ∆t

new components to the time distribution of components
on k vertices is

∆t
∑
m

τm

m!

∑
k1,··· ,km

k1Ck1 · · · kmCkm

×
(

ρk1(σ)dσ

Ck1

+ · · · + ρkm(σ)dσ

Ckm

)
δ1+

∑
i ki,k.

Let us put ρ(σ, z) ≡
∑

k ρk(σ)zk. Multiplying the ex-
pression above by zk and summing over k yields the term
∆tz2∂zρ(σ, z)T ′(z∂zC)dσ.

During the proof of equation (7), we have already ob-
served that α∆tkCk components of size k are destructed
between t and t+∆t. According to the definition of ρk(σ),
the number of vertices of relative age contained between
σ and σ + dσ, which belonged to one of these components
is α∆tkρk(σ).

After summation over k, the destruction term is
α∆tz∂zρ(σ, z)dσ.

Moreover, a vertex of relative age σ at time t has
relative age σt

t+∆t at time t + ∆t . Hence, the local-in-time
profile verifies, to first order in ∆t/t, the following relation

tdσ

(
ρ

(
σt

t + ∆t
, z

)
− ρ(σ, z)

)
= −α∆tz∂zρ(σ, z)dσ

+ ∆tz2∂zρ(σ, z)T ′(z∂zC)dσ.

This leads to the differential equation

σ∂σρ = (α − zT ′ (z∂zC)) z∂zρ. (8)

As in the case of a Poisson law, this equation leads to
recursion relations for the ρk(σ)’s. Differentiating equa-
tion (8) k times with respect to z and taking z = 0 leads
to a first order linear differential equation for ρk, in which
ρ1, · · · , ρk−1 appear. Putting x = σα, the first few distri-
butions are:

ρ1 =τ0x

ρ2 =
τ0τ1

α

[
x − x2

1 + α

]

ρ3 =x

[
τ2
0 τ2

2α(1 + α)
+

τ2
1 τ0

α2

]

− x2 2τ0τ
2
1

α2(1 + α)

+ x3

[
τ0τ

2
1

α2(1 + 2α)
− τ2

0 τ2

2α(1 + α)2

]
·

Fig. 2. The analytic result (solid lines) for the profiles of small
connected components (from top to bottom k = 1, 2, 3) com-
pared to numerical simulations (gray clouds) on 5000 random
graphs of size 30000. T (z) = (1 − p)/(1 − pz) with p = 0.2.

Component distribution at σ = 1

To conclude this paragraph, we shall compute the prob-
ability for the youngest vertex to belong to a component
of size k. This is not difficult to do because, unlike all
the other vertices in the graph, the youngest one does not
have any outgoing edge. Hence, as established in the proof
of equation (7), it belongs to a component of size k with
probability

∑
m

τm

m!

∑
k1,··· ,km

k1Ck1 · · · kmCkm δ1+
∑

i ki,k.
More compactly:

ρ(σ = 1, z) = zT (z∂zC). (9)

Note that equations (8, 9) can be used to recover the global
equation (7).

5.4 Tree distributions

Given a connected graph G, one may wonder how many
connected components of the random evolving graph are
isomorphic to G. In other words, if k is the number of
vertices of G, we look for the average number of increas-
ing maps v : [1, · · · , k] → [1, · · · , t] such that the ver-
tices v1, · · · , vk span a connected component of the ran-
dom graph isomorphic to G.

Let mi be the number of edges incoming to vertex i
in G. The probability that vertices v1, · · · , vk span a con-
nected component of the random graph isomorphic to G
is evaluated using the following two rules:

• vertex vi has mi incoming edges coming from the given
vertices ;

• the vertices w of the random graph which are not in
the image of v must not be connected to any of the
vi’s.
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Hence, putting vk+1 = t+1, the probability we look for is

k∏
i=1


 τvi,mi(

vi−1
mi

) ∏
vi<wi<vi+1

∑
j≥0

τwi,j(
wi−1

j

)(wi − i − 1
j

) .

The average number of components is then obtained
by summing this expression over all increasing maps v

〈nG〉 =
∑

1≤v1<···<vk≤t

k∏
i=1

×


 τvi,mi(

vi−1
mi

) ∏
vi<wi<vi+1

∑
j≥0

τwi,j(
wi−1

j

)(wi − i − 1
j

) .

In the thermodynamic limit, the sum over j is given by
formula (2), and its product over wi tends to e

−iα ln
vi+1

vi

provided only large wi’s contribute significantly. Hence,
approximating the sum over v1, · · · , vk by an integral
yields a contribution of G equal to

Cm1,··· ,mk
= tk−m

(
k∏

i=1

τmi

)

×
∫

0≤σ1≤···≤σk≤1

dσ1σ
α−m1
1 · · · dσkσα−mk

k . (10)

This formula looks pretty much like the one proposed in
the poissonnian case in [2]. In particular, it shows exactly
in the same way that only connected graphs with k = m+1
(i.e. trees by Euler’s formula) give a contribution that
scales like t in the thermodynamic limit. Moreover, the
contribution of a tree with degree distribution mi is

k∏
i=1

τmi

i(α + 1) − (m1 + · · · + mi)
· (11)

This formula was obtained by integration over all relative
ages σ0, · · · , σk−1. However, if we only integrate over some
of these variables while fixing the others, say σk1 < σk2 <
· · · < σkp , we expect to get the contribution of a given tree
with k vertices amongst which p vertices have imposed
age. For instance, taking k = 2 and integrating over σ1

while imposing σ2 = σ gives the contribution of trees of
size 2 with younger vertex of age σ. Explicit integration
yields a contribution τ0τ1σ

2α/(α+1) . On the other hand,
if we integrate over σ2 and fix σ1 = σ, we get τ0τ1(σα/α−
σ2α/α) for the contribution of trees of size 2 with older
vertex of age σ. The sum of these two quantities, which is
expected to be the probability that a site of relative age
σ belongs to a tree with two vertices is, indeed, equal to
ρ2(σ) as calculated from equation (8).

In fact, this result is not really surprising, since the
derivation of equation (7) relies on the fact that, in the
thermodynamic limit, a new vertex connects with vanish-
ing probability to several vertices in the same component.
In other words, this equation of evolution takes only trees
into account so equation (11) should imply it. The full
proof is instructive but tedious, and we relegate it to the
appendix.

6 The percolation transition

Formula (7) gives a relation between the Ck’s, which rep-
resent the asymptotic number of connected components
of size k. This equation involves in particular the function
z∂zC(z) =

∑
k kCkzk.

Note that kCk is the fraction of sites belonging to
components of size k. This means that, if

∑
k kCk = 1,

no single component in the graph can have size O(t). On
the other hand, if

∑
k kCk < 1, the possibility exists that

a giant component contains a finite fraction of the sites.
The possibility that several very large components coexist
is usually ruled out because under a rearrangement of a
number o(t) of edges these components would merge with
finite probability. Though we have not tried to build a for-
mal argument in the case of evolving graphs, the intuition
remains the same and is confirmed by numerical simula-
tions. So we take for granted that if

∑
k kCk < 1 a single

giant component contains a fraction 1 −
∑

k kCk of the
sites.

6.1 Main results

The arguments that lead to the main qualitative and
quantitative features of the percolation transition are of
technical nature. So we postpone them to the next section.

Percolation criterion

Unless T (z) is a polynomial of degree 1, the system con-
tains a giant component if either the variance γ of T is
> 1/4 or the average α of T is > 1/2. The boundary sep-
arating the non percolating phase from the percolating
phase is given by the two conditions γ = 1/4 and α < 1/2.
The emergence of a giant component is purely due to an
increase of the variance of T above the threshold 1/4.

Behaviour below threshold

If γ ≤ 1/4 and α ≤ 1/2, the distribution of component
sizes in the system is critical, characterized by the follow-
ing three equivalent properties.

The dominant singularity of C(z) at z = 1 is

Csing(z) ∝ (1 − z)

2
1 −

√
1 − 4γ . (12)

For large k, the fraction of sites belonging to compo-
nents of size k decreases like

kCk ∝ k
−

2
1 −

√
1 − 4γ . (13)

For a finite system of size t → ∞, the large components
have a size of order

k(t) ∝ t

1 −
√

1 − 4γ

2 . (14)
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Behaviour above but close to threshold

The percolation transition is of infinite order when γ
crosses the value 1/4 while keeping α < 1/2. If we de-
note by P∞ the fraction of sites occupied by the giant
component, then when γ−1/4 → 0+, P∞ is exponentially
small:

log P∞ ∼ −π/
√

4γ − 1 for γ → 1/4+. (15)

For large k, the fraction of sites belonging to compo-
nents of size k decreases like

kCk ∝ k− 3
2 e−kP∞ . (16)

6.2 Discussion

We start our discussion by analyzing the behavior of C(z)
close to z = 1. As before, we assume that T (z) is not a
polynomial of degree 1, i.e. that T ′′(1) �= 0.

We start from equation (7) and apply the operator z∂z

to get

(z∂zC) + αz∂z(z∂zC) =

zT (z∂zC) + zT ′(z∂zC)z∂z(z∂zC) (17)

which involves only z∂zC.
Set z = eτ and Y (τ) ≡ 1 − z∂zC. Equation (17) can

be rewritten for Y :

0 = Y (τ) − 1 + αẎ (τ)

+ eτ
(
T (1 − Y (τ)) − T ′(1 − Y (τ))Ẏ (τ)

)
.

We now make two assumptions.

i) There is no giant component:
∑

k kCk = 1 or equiva-
lently Y (0) = 0,

ii) the size distribution of clusters has a first moment:
µ1 =

∑
k k2Ck is finite.

Note that ii) implies that Ẏ (0−) exists and has value −µ1.
We differentiate the equation for Y with respect to τ

and put τ = 0, yielding:

µ2
1T

′′(1) + µ1(2α − 1) + 1 = 0.

The discriminant of this equation for µ1 is 1 − 4γ where
γ = T ′′(1) + α − α2 is the variance of the distribution T .

The case when T ′′(1) = 0, i.e. when T (z) is affine,
has some pathologies, but it has already been treated in
detail.

If T ′′(1) > 0, the quadratic equation has two roots,

a) both real and positive if 1−2α and 1−4γ are positive,
b) both real and negative if 1− 2α is negative but 1− 4γ

is positive,
c) both complex if 1 − 4γ is negative.

Clearly, only case a) is compatible with our two assump-
tions i) and ii). In the sequel we shall take for granted that
in this case, the assumptions i) and ii) are indeed true.

In cases b) and c), at least one of the assumptions must
fail. We show that it is i), the absence of giant component.
To do that we need a more precise analysis.

Let us first give some properties of Y (τ) for τ ≤ 0. By
construction, Y (τ) has a convergent expansion in powers
of eτ with negative coefficients (except the first) and is
bounded by 0. So Y is continuous decreasing on ]−∞, 0].

To obtain the large order behavior of Ck we simplify
equation (17) assuming that τ and Y (τ) are small2. This
is certainly a good approximation to describe the small
τ behavior of Y (τ) when there is no percolation cluster
because in that case Y (τ) is continuous and vanishes at
τ = 0. It is also true close to a continuous phase transition
because Y (0) is small.

Keeping only the dominant contributions yields

Ẏ (T ′′(1)Y − ατ) + (1 − α)Y + τ � 0.

Setting γF = T ′′(1)Y − ατ , we derive the limit equation

γF Ḟ + F + τ = 0. (18)

This equation is the same as the one found and studied
in [2,6]. As the presentation in [2] is closer in spirit to this
one, this is the one we refer to in the sequel for details.
In the Poissonian case, the authors showed carefully that
equation (18) indeed contains the quantitative universal
features of the exact cluster generating function. We take
for granted that this remains true for general T .

When γ < 1/4, we write β =
√

1 − 4γ. The general
integral of equation (18) is

(
1 +

1 − β

2
F

τ

) 1+β
2β
(

1 +
1 + β

2
F

τ

) β−1
2β

=
Cst

τ
· (19)

Suppose F (0) = 0, but F (τ)/τ is not bounded close to τ =
0−. Then at a point where F (τ)/τ is large, equation (19)
implies that F (τ) is of order one, a contradiction. For
analogous reasons, if F (0) = 0 and F (τ)/τ is bounded,
limτ→0− 1 + 1+β

2
F
τ = 0 and then

F (τ) +
2

1 + β
τ ∝ τ

1+β
1−β � τ. (20)

To summarize, if γ < 1/4 and F (0) = 0, F ′(0) ex-
ists (and then µ1 =

∑
k k2Ck is finite) so that i) implies

ii): this means that if γ < 1/4 but α > 1/2, i) has to be
wrong, and

∑
k kCk < 1.

A word of caution is needed here. To get the limiting
equation (18), we have neglected terms of order τ2 in (17).
So strictly speaking, equation (20) is correct only if 1+β

1−β <

2, i.e. 2/9 < γ < 1/4. A more careful analysis, analogous
to that sketched in [2], would show that in general, in the
absence of a giant component, the small τ expansion of

2 Note that we do not assume that they are of the same order
of magnitude.
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0

1 2

Fig. 3. Phase structure of the evolving graph in the subsimplex
0 = p3 = p4 = · · · , p0 + p1 + p2 = 1. The unshaded area
corresponds to the non percolating phase. Horizontal lines fill
the region γ ≥ 1/4 and vertical lines the region α ≥ 1/2.

F (τ) starts with a standard Taylor series in τ up to order
� 1+β

1−β � and then a leading singularity proportional to τ
1+β
1−β .

When γ < 1/4, we write β =
√

4γ − 1. Equation (18)
implies that

1
2

log(γF 2 + τF + τ2) − 1
β

arctan
(

βF

F + 2τ

)
(21)

is locally constant. As F is continuous, the above quantity
jumps by ±π when F+2τ changes sign. To fix conventions,
we specify the function arctan by demanding that it is
continuous and takes value in ] − π/2, π/2[. We argue by
contradiction that F cannot vanish at τ = 0: if F and τ are
small, the argument of the log is a small positive number
so the first term gets large and negative, while the term
involving arctan remains bounded. So again i) fails.

We have established the percolation criterion
announced in the previous section.

Furthermore, the relation γ−1/4 = T ′′(1)−(2α−1)2/4
shows that the region separating the percolating phase
from the non percolating phase is γ = 1/4 and 2α−1 ≤ 0:
the emergence of a giant component is purely due to an
increase of the variance of T above the threshold 1/4. This
is a bit counterintuitive, because it implies that there are
cases with arbitrary small α and a giant component.

To illustrate that point, we present in Figure 3 the case
when T is a quadratic polynomial.

The properties that describe the system when there
is no giant component or close to the threshold (when
the giant component is small) only rely on equation equa-
tion (18), and we refer to [2] for the detailed analysis that
leads to equations (12–16).

6.3 Comparison with static graphs

Maximum entropy static graphs with fixed in- and/or out-
degree distributions have been studied in [3,13]. If only the
in-degree is fixed, the out-degree is always Poissonian, in

contrast with the global geometric out-degree distribution
of the evolving cousin model. Let us compare briefly the
percolation criteria of the evolving case with two static
maximum entropy situations. If T−(z) = T (z) is the in-
degree and T+(z) the out-degree distribution of the static
model, we read from [3,13] that the condition for per-
colation is T ′′(1)T ′′

+(1) − (T ′(1) − T ′(1)2)2 > 03 When
only the in-degree is fixed in the static case, T+ is Pois-
sonian, one finds γ + α > 1. When moreover the out-
degree is fixed to be independent of the in-degree and
follow a geometric law, so that the static graph has the
same (global) degree distribution as the evolving graph,
one finds 2γ + α2 > 1. The thresholds are different in the
static and evolving cases. Moreover, the percolating region
of the evolving case always contains strictly the static per-
colating region, because when γ < 1/4 and α < 1/2 both
γ+α and 2γ+α2 are less than 3/4: the inhomogeneities of
the evolving graph, in which old vertices have an effective
high coordinacy, favor the emergence of a giant compo-
nent. However, this giant component starts with a very
tiny size, in contrast with the static case, when its growth
is generically linear.

6.4 Comments on the profile of the infinite cluster
in the percolating phase

For a Poissonian in-degree distribution, the authors of [2]
obtained a closed equation which fitted perfectly with nu-
merical simulations. The naive adaptation of their argu-
ment to the general case is straightforward, but gives an
incorrect result.

Though we have not been able to derive a closed equa-
tion for the profile of the infinite component in the case of
an arbitrary degree distribution, the successive derivatives
of this profile at σ = 1 can be computed in a systematic
way as follows.

Defining D ≡ z∂zC, we can derive from the previous
results that

σ∂σρ = (α − zT ′ (D)) z∂zρ

zT (D)− D = (α − zT ′(D))z∂zD

ρ(σ = 1, z) = zT (D).

The first equation is just a rewriting of equation (8), and
the second one was obtained by applying the operator z∂z

to equation (7). The last equation gives the density at
σ = 1. Then the first equation can be used to get the

3 This is, as should be the case for a static graph, symmetric
in T and T+ because T ′(1) = T ′

+(1) is automatic: any edge is
in at one end and out at the other.
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derivative of the density at σ = 1:

σ∂σρ(σ = 1, z) = (α − zT ′ (D)) z∂zρ(σ = 1, z)

= (α − zT ′ (D)) z∂z(zT (D))

= (α − zT ′ (D)) (zT (D) + zT ′(D)z∂zD)

= (α − zT ′ (D)) zT (D)

+ zT ′(D)(zT (D) − D)

=αzT (D)− zDT ′(D).

If D(z = 1) = 1, ρ(σ = 1, z = 1) = 1, but σ∂σρ(σ =
1, z = 1) = 0. The same kind of algebra can be used to
compute the successive derivatives ((σ∂σ)nρ) (σ = 1, z)
for n = 2, · · · . Again, one can check that this vanishes
if D(z = 1) = 1. This is of course natural in the non
percolating phase.

However, in the percolating phase, D(z = 1) = 1−P∞
and one finds

ρ(σ = 1, z = 1) = T (1 − P∞)

σ∂σρ(σ = 1, z = 1) = αT (1 − P∞)−(1 − P∞)T ′(1 − P∞).

Formally, we can write

ρ(σ, z) = elog σ[(α−zT ′(D))z∂z+(zT (D)−D)∂D ]zT (D), (22)

where now z and D are independent variables, which is
true order by order in an expansion in powers of log σ.
Writing ρ∞(σ) = 1 − ρ(σ, z = 1) for the profile of the
giant component, equation (22) can be used to obtain
systematically, for small values of n, a (rather compli-
cated) formula for ((σ∂σ)nρ∞) (σ = 1) as a polynomial
in P∞, T (1 − P∞), T ′(1 − P∞) · · · , T (n)(1 − P∞).

In particular, as a trivial example,

ρ∞(σ = 1) = 1 − T (1 − P∞) � αP∞. (23)

On the other hand, for σ close to 0,

1 − ρ∞(σ) ∝ σα, (24)

so the giant component contains all the old vertices, but
only a fraction (which is exponentially small close to the
threshold) of the young vertices. That means the perco-
lation transition is very inhomogeneous and takes mainly
place in the part of the graph where it is denser than av-
erage.

7 Conclusions

In this study, we have solved a model of evolving random
graph which, albeit simple, involves an arbitrary in-degree
distribution.

We have described the degree distributions and their
local-in-time profiles. By construction, in-degree and out-
degree at each vertex are independent. The local out-
degree distribution follows an age dependent Poisson law,
which after integration over ages leads to a geometric
global out-degree distribution.

We have also made a detailed analysis of the distri-
bution of component sizes, again at the global and the
local-in-time level. We have shown the validity of the self
averaging hypothesis by proving the equivalence with a
direct exact tree enumeration.

The parameter controlling the percolation transition
has been found, quite surprisingly, to be simply the vari-
ance of the in-degree distribution, in contrast with the
analogous static models.

Below the transition, the large components have a size
which scales like a power of the total size of the graph.
The size of the giant component close to the threshold
has been computed. It is exponentially small. The unusual
fluctuation induced percolation mechanism might be the
reason why the critical behavior of this models is so dif-
ferent from what is observed in the case of static graphs
(see [3,11,13]). There, the generic behavior close to the
transition is a linearly growing giant component.

We have shown how all these differences could be used
to discriminate in certain cases between a static and an
evolving random graph even when the in and out degree
distributions are the same for both.

Among the unanswered questions is a direct descrip-
tion of the profile of the giant component. For a Poisso-
nian in-degree distribution, the authors of [2] obtained a
closed equation which fitted perfectly with numerical sim-
ulations. The naive adaptation of their argument to the
general case is straightforward, but gives an incorrect re-
sult. It would be desirable to find a valid argument for
general T , or more modestly to understand why the argu-
ment in fact works for the Poissonian case.

We thank Denis Bernard for a careful reading of the manuscript
and for his kind permission to include the results of Section 5.2,
that where obtained with him some time ago.

Appendix A: A combinatorial identity

We show that the tree distribution, equations (10, 11),
leads to the generating function formula, equation (7).
If V is a finite (nonempty) set, we denote by TV the set
of trees with vertex set V .

If moreover V is totally ordered , we denote its supre-
mum by sV . If moreover |V | ≥ 2, we define T n

V for
n = 1, 2, · · · , |V | − 1 as the set of trees with vertex set
V such that vertex sV has n neighbors. Note that T n

V is
non empty.

If V = [1, · · · , k] (with the usual order) we denote TV

by Tk and if k ≥ 2 we denote T n
V by T n

k for n = 1, · · · , k−1.
We shall sometimes use the shorthand notation Tk1,··· ,kn ≡
Tk1 × · · · × Tkn .

If V is a totally ordered finite (nonempty) set, there
is a unique order preserving map from V to [1, · · · , |V |],
so that there is a canonical bijection between TV and
T|V |. For the same reason, if moreover |V | ≥ 2 there
is a canonical bijection between T n

V and T n
|V | for any

n = 1, 2, · · · , |V | − 1.
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Let V be a totally ordered finite (nonempty) set V
with |V | ≥ 2 and let n ∈ [1, · · · , |V | − 1]. Take a tree
Υ ∈ T n

V .
To Υ we associate the following data.

[i] An n-tuple of positive integers (k1, · · · , kn) such that

k1 + · · · + kn = |V | − 1.

[ii] A sequence (Υ1, · · · , Υn) ∈ Tk1,··· ,kn .
[iii] A sequence (V1, · · · , Vn) of disjoint subsets of V , each
endowed with the order induced from that of V , such that

[a] (|V1|, · · · , |Vn|) = (k1, · · · , kn),
[b] V1 ∪ · · · ∪ Vn = V \{sV },
[c] sV1 < · · · < sVn for the order in V .

[iv] A sequence (v1, · · · , vn) ∈ [1, · · · , k1]×· · ·×[1, · · · , kn],
as follows.

Remove from Υ the vertex sV and the edges incident
to it. What remains is a forest made of n components.
There is a single way to label the corresponding n vertex
sets V1, · · · , Vn so as to satisfy [c], and then we define
(k1, · · · , kn) by [a] so we have obtained [i] and [iii]. For
l ∈ [1, · · · , n] the connected component with vertex set
Vl is a tree. We define Υl as its canonical representative
in Tkl

and by vl the vertex of Υl whose preimage in Vl is
connected to sV in Υ ; this gives [ii] and [iv].

Conversely, one can recover Υ from the data by revers-
ing the procedure.

We let PV
k1,··· ,kn

be the set of sequences (V1, · · · , Vn) of
disjoint subsets of V , each endowed with the order induced
from that of V , satisfying conditions [a] and [b] above. The
set obtained when moreover [c] is taken into account is
denoted by Prestr V

k1,··· ,kn
. There is a 1 to n! correspondence

between Prestr V
k1,··· ,kn

and PV
k1,··· ,kn

.
To summarize what we have found, we have put T n

V in
– 1 to 1 correspondence with the disjoint union

⋃
Tk1,··· ,kn × Prestr V

k1,··· ,kn
× [1, · · · , k1] × · · · × [1, · · · , kn],

– 1 to n! correspondence with the disjoint union
⋃

Tk1,··· ,kn × PV
k1,··· ,kn

× [1, · · · , k1] × · · · × [1, · · · , kn],

where in both cases the union is taken over n-tuples of
positive integers (k1, · · · , kn) such that k1 + · · · + kn =
|V | − 1.

From now on, we fix V = [1, · · · , k] for some integer
k ≥ 2. We assign to each tree Υ ∈ Tk a weight as follows.
Write mi for be the number of edges of Υ connecting i to
[1, · · · , i − 1]. Then

WΥ = τm1 · · · τmk

∫
0≤σ1≤···≤σk≤1

× dσ1 · · ·dσkσα−m1
1 · · ·σα−mk

k .

Write HΥ for the first factor and IΥ for the integral, so
that WΥ = HΥ IΥ . We change variables and set σk = σ̃k

and σi = σ̃iσ̃k for i = 1, · · · , k − 1. The power of σ̃k in

the new integrand is k − 1 + kα −m1 − · · · − mk = kα so
integration over σ̃k leads to IΥ = 1

1+kα ĨΥ with

ĨΥ =
∫

0≤σ1≤···≤σk−1≤1

dσ1 · · ·dσk−1σ
α−m1
1 · · ·σα−mk−1

k−1 .

To avoid ambiguities when several trees are used at the
same time, we shall sometimes write mΥ

i instead of mi.
Suppose that Υ ∈ T n

k , which amounts to set n = mk.
We want to express WΥ in terms of its decomposition, in
fact in term of the n trees (Υ1, · · · , Υn) ∈ Tk1 × · · · × Tkn

with k1+· · ·+kn = |V |−1, and of the partition V1∪· · ·∪Vn

(it turns out that WΥ does not depend on the choice of
one vertex in each Vi).

The decomposition procedure associates to each i ∈
[1, · · · , k − 1] one of the trees Υ1, · · · , Υn, say Υl and a
vertex i′ ∈ [1, · · · , kl] in Υl. By construction of the decom-
position, if j ∈ [1, · · · , i − 1] is such that (i, j) is an edge
of Υ then i and j have the same Υl, j′ ∈ [1, · · · , i′ − 1]
and (i′, j′) is an edge of Υl. Hence mΥ

i = mΥl

i′ and
HΥ = τnHΥ1 · · ·HΥn has a simple multiplicative behav-
ior.

Our aim is now to show that when (Υ1, · · · , Υn)
(and then automatically (k1, · · · , kn)) are fixed∑

P[1,··· ,k]
k1,··· ,kn

ĨΥ = IΥ1 · · · IΥn ·

We introduce another tree, Υ̇ , whose decomposition
is made of the same trees (Υ1, · · · , Υn) as Υ , but with
V̇1 = [1, · · · , k1], V̇2 = [k1 + 1, · · · , k1 + k2], · · · and v̇1 =
k1, v̇2 = k1 + k2, · · · . Write ṁi for the number of edges of
Υ̇ connecting i to [1, · · · , i − 1].

There is a unique permutation, say λ, of [1, · · · , k − 1]
which maps V1 into V̇1, V2 into V̇2, · · · , and is strictly in-
creasing in each. Then mi = ṁλ(i) for each i ∈ [1, · · · , k−
1]. If we set σi = σ̇λ(i) we obtain

ĨΥ =
∫

0≤σ̇λ(1)≤···≤σ̇λ(k−1)≤1

× dσ̇1 · · · dσ̇k−1σ̇
α−m1
1 · · · σ̇α−mk−1

k−1 .

Write Rλ for the region of integration 0 ≤ σ̇λ(1) ≤ · · · ≤
σ̇λ(k−1) ≤ 1.

Conversely, (k1, · · · , kn) being kept fixed, if
(V1, · · · , Vn) describes P [1,··· ,k]

k1,··· ,kn
each permutation λ

of [1, · · · , k − 1] such that λ−1 is strictly increasing when
restricted to V̇1, · · · , V̇n appears exactly once. If R be
the union of all such Rλ’s (the intersection of different
Rλ’s is of measure 0), one checks that (σ̇1, · · · , σ̇k−1)
is in R if and only if 0 ≤ σ̇1 ≤ · · · ≤ σ̇k1 ≤ 1,
0 ≤ σ̇k1+1 ≤ · · · ≤ σ̇k1+k2 ≤ 1, · · · .

This shows that when (Υ1, · · · , Υn) are fixed∑
P[1,··· ,k]

k1,··· ,kn

ĨΥ = IΥ1 · · · IΥn .

If we recall moreover that HΥ = τnHΥ1 · · ·HΥn and
that T n

V is in 1 to n! correspondence with the disjoint
union

∪(k1,··· ,kn)Tk1,··· ,kn×PV
k1,··· ,kn

×[1, · · · , k1]×· · ·×[1, · · · , kn],
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we obtain as an immediate consequence that

(1 + kα)
∑

Υ∈T n
k

WΥ =

∑
(k1,··· ,kn)

∑
(Υ1,··· ,Υn)∈Tk1,··· ,kn

Υn

n!
k1WΥ1 · · ·knWΥn ·

Defining W(k) ≡
∑

Υ∈Tk
WΥ =

∑
n

∑
Υ∈T n

k
WΥ , it is

plain that
∑

k W(k)zk satisfies equation (7), which has
only one formal power series solution vanishing at z = 0.
QED.
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